NIC-TR-2004-016

NIC FastICA Implementation

Purpose

This document will describe the NIC FastICA implementation. The FastICA algorithm
was initially created and implemented at The Helsinki University of Technology (HUT)
by Hyvarinen and Oja [1]. The HUT version of the FastICA algorithm was implemented
in Matlab, which is not fast enough for the problems required by the NIC and it cannot
handle the problem sets required by the NIC. To overcome these issues, we have re-
implemented the algorithm using the C and C++ programming languages, the LAPACK
linear algebra package, the MPI message-passing library and the OpenMP library. The
results of our re-implementation, including numerical validation using the HUT version
of the FastICA code and the performance of the parallel implementations are included in
this document.

For an explanation of the ICA process, see NIC-TR-2004-001.

The FastICA Algorithm

The FastICA algorithm attempts to find a set of independent components by estimating
the maximum negentropy [2]. To make this estimate, the algorithm iteratively searches
for the weight set w; of a neural network from a data set X using the following procedure:

1 make a random guess for the weights associated with component w;,

2 find w;, = E(Xg(W;3, X)) — E(g"(X"W;41))W; 1.1, Where X is an observation from
X and g is a contrast function (see [2] for details).

3 normalize w,

4if 11 - Iw,"'w,_ll > tolerance repeat starting at step 2

5 repeat, starting at step 1, until all weights are found

The NIC implementation of the FastICA algorithm (see figure 1) whitens the source
data as a preprocessing step then finds the weights associated with each independent
component. The whitening process starts with the computation of the covariance matrix
and the average for multichannel data. The covariance matrix is used to compute the
sphering matrix (see NIC-TR-2004-001) and the data channel averages are used to center
the data. The algorithm whitens the centered data by multiplying the data by sphering
matrix.

After the data is whitened, the NIC FastICA code starts the search for the weight
matrix by iteratively searching for each column of the weight matrix. The k™ iteration of
the search loop makes an estimate of the k™ weight vector. The code can generate the
estimate as a random vector, a user defined vector or the k™ column of an identity matrix
of the appropriate size, which is orthogonalized to the previously found weights and
normalized.



The orthongonalized vector is then used as w, , in step 1 of the search algorithm, which
is iteratively refined until w, ; converges to an acceptable solution. The estimate is refined
using the negentropy estimation, orthongonalized with the previous weights and
normalized. After wy , is found, it is tested for converges by computing the inner product
of wy; and w,;,,. If the absolute value of the inner product equals 1 +/- €, where ¢ is some
tolerance, the estimate has converged and w,;,, becomes the k" column of the weight
matrix.

Source Data

Find components

Random initial guess

Covariance Matrix/
| Ave Ve

Orthogonalize

Center data Normalize

Whiten data Refine estimate

Contrast
Orthogonalize
Normalize

Error Estimate

Next Component

Output Weight Matrix

Figure 1. The FastICA algorithm whitens the source data in the preprocessing step, then iteratively
finds the neural network weights associated with each component. On each iteration, an initial
random guess of the weights for a component is made, then the guess is iteratively refined.

Parallelizing FastICA

All of the FastICA procedures (e.g., covariance matrix, center data, whiten data, etc),
with the exception of orthogonalization and normalization, involve operations on the
columns of the source data. As the order in which the columns are processed does not
effect the results of the computation, we partition the source data into subsets and
perform the computations independently. Once computations are complete on all
partitions, we can collect the results to produce results for the whole data set. This
characteristic of the FastICA algorithm makes the algorithm easily parallelizable for both
shared memory and cluster computers. For example, we can partition the source data into
subsets and distribute them to different processors. Each processor can compute the sum
and sum squared of each data channel and the sum of the products of each data channel
for its subset. We can accumulate the results from each processor to compute the
covariance matrix for the entire data set. For a shared memory system, the partitioning
involves unrolling the loop responsible for independent computations (i.e., the sum, sum
squared and sum of products), from which we compute the covariance matrix. In the
distributed algorithm, each processor performs the independent computations locally and



a reduction operator produces the global sum, which the operator distributes to all nodes
in the computation. Each node computes the covariance matrix independently. As the size
of the data operations is large (~59000 observations on 32 channels), we expect both the
shared memory and distribute systems to provide good speedup. If the number were too
small, the distributed system would probably not do well. Figure 2 is a schematic
description of the FastICA parallelization.

Source Data

Find components

Preprocess

Refine estimate |

4 W s
Accumulate Results Contrast

K Y
Covariance Matrix
Average Vector

Orthogonalize and
normalize

Error Estimate

Cepter data

- ¥
L W L' Next Component

Whiten data
Output Weight Matrix

Figure 2 shows the structure of the FastiICA MPI implementation. The openMP implementation has
a similar structure.

Validation of FastICA

Sequential Validation

The results NIC FastICA implementation were compared to the results of the HUT
FastICA implementation, which we assume is correct. To ensure consistency between the
algorithms, we make a deterministic “initial estimate” of the weights by setting the guess
for i™ weight to the i" column of an n-by-n identity matrix, where n is the number of
components to be found. The eigenvalue decomposition used by the HUT FastICA
differs from the NIC FastICA, which leads to numerical inconsistencies (note: the
differences are inconsistencies, not inaccuaracies). To avoid the numerical problems, we
replaced the NIC FastICA’s sphering matrix with the sphering matrix produced by the
HUT version. This ensures consistent whitening of the data.

To validate the code, we used the data set from experiment #5, (described in NIC-TR-
2004-002), to generate a weight matrix using both implementations. The source data for
this experiment consisted to ~59000 observations on 32 channels. As both
implementations used the same sphering matrix, we assume that the whitening process in
both cases produced the same results. We did not compare the output of these processes



because of their size. Nevertheless, we can assume the NIC code is valid if the weight
matrices produced by each version are the same within the numerical tolerances of the
machine and software.

Parallel Validation

To validate the parallel versions of the FastICA algorithm, we followed the same
testing procedures and validation criteria as in the sequential validation. We ran the
procedures for 1 — 16 processors on the NIC’s Dell Cluster (neuronic) {we will also run
the code on 1 — 8 processors of the p655 shared memory cluster}. (A description of the
clusters will be presented in a pending technical report).

The MPI FastICA implementation on one processor matched the HUT implementation
exactly (within the precision of the machine). However, the results produced by neuronic
show a difference of ~10” between the NIC and HUT version of FastiCA when more
than one processor was used. Moreover, the error grew as the number of processors was
increased. This result is unexpected as there should have been no difference between the
two implementations. A brief investigation into the architecture of the processors
suggests that the hidden bits associated with the registers account for the discrepancy in
accuracy. When MPI passes data between processors, these bits are truncated, hence a
loss of accuracy. If the hidden bits are responsible for the discrepancy then it should not
be of concern. FastICA is a fixed point algorithm, so the additional iterations should
reclaim any lost accuracy.

Performance of Parallel NIC FastICA

Performance data for the parallel FastICA implementations were collected in
conjunction with the validation tests. Timing instructions were added to the code for each
implementation to measure the execution time for reading the data and for computing the
weight matrix. The code was run using one processor per node (NodeT) and two
processors per node (CPUT). The results we are presenting here are preliminary,
however, they indicate that the distributed version of the FastICA algorithm performs
well with some anomalous behavior (see Figure 2). Specifically, the dramatic increase in
execution time in the NodeT case with 7 processors. The cause of the problems is under
investigation. Also, the increase in execution time in the CPUT is surprising and under
investigation.



Time in Seconds

20 +

18

Execution Time

16

14

12

10

sCPUT

Node T
eSeqT

T
10
Number of Processors

15

20

Figure 3 shows the performance evaluation on neuronic was run using 8 nodes. Two sets of
performance data were collected. The NodeT set was collect using one processor per node and the

CPUT set was collect using two processors per node.

The read time for the source data shows a steady, probably linear increase (see Figure
4). Though the performance does not seem to be severely impacted by the increase within

the range of times the increase will limit code’s scalability.

Time in Seconds

3.5 4

Time to Read Source Data

2.5

1.5

0.5

10
Number of Processors

& CPU Read
Node Read
x Seq Read

Figure 4 shows the time to read source data neuronic using up to 8 nodes. Two sets of performance
data were collected. The NodeT set was collect using one processor per node and the CPUT set was

collect using two processors per node.

Please note: this data is old and the algorithm was modified to address some efficiency
issues. We will be altering this report as we get a more up-to-date set of performance

data.



Bibliography

[1] Hyvérinen, A. and E. Oja. 1997, A Fast Fixed-Point Algorithm for Independent
Component Analysis. Neural Computation, 9(7):1483-1492.

[2] Hyvarinen, A. 1999. Fast and Robust Fixed-Point Algorithms for Independent
Component Analysis. IEEE Transactions on Neural Networks 10(3):626-634.



