
NIC-TR-2004-017

NIC Infomax Implementation

Purpose

This document will describe the NIC Infomax implementation. The Infomax ICA
algorithm was developed by Bell and Sejnowski [1] and implemented in the EEGLab
package [2]. EEGLab is a set of Matlab procedures designed to analyze EEGs. As with
the FastICA algorithm (see NIC-TR-2004-016), the EEGLab Infomax algorithm is not
fast enough for the problems required by the NIC and it cannot handle the problem sets
required by the NIC. To overcome these issues, we have re-implemented the algorithm
using the C and C++ programming languages, the LAPACK linear algebra package and
the OpenMP library. {The results of our re-implementation, including numerical
validation using the EEGLab version of the Infomax code and the performance of the
parallel implementations are included in this document.}

For an explanation of the ICA process, see NIC-TR-2004-001.

The Infomax Algorithm

The Infomax algorithm attempts to find a set of independent components using a neural
network-based, mutual information minimization algorithm [1]. There are variations of
this algorithm [3], but we have chosen the default version supplied by the developers of
EEGLab as our comparison standard. See Figure 1 for a flow representation of the
algorithm.

 As with the FastICA algorithm (NIC-TR-2004-016), the Infomax algorithm whitens the
source data before generating the weight matrix W associated with the independent
components. The weight matrix is initialized to the identity matrix, which the algorithm
iteratively refines using a learning algorithm. The learning algorithm random selects,
without replacement, a subset of the whitened data x from which it computes an estimate
of the unmixed signals u = Wx + b, where b is a bias vector used by the neural network.
The algorithm searches for W by estimating the likelihood that we can obtain the
distribution of the observations from our estimate of W. From the likelihood function, we
can estimate a ΔW that maximizes the likelihood that W produces a correct estimate. The
formulation derived in [3] for this estimate is ΔW = [I – 2tanh(u)uT]W. We update W
from ΔW and we update b using the current learning rate, then repeat the process using
the next training set. After the last training set is processed, we estimate the difference
between the current estimate of W and the previous estimate. If the difference exceeds a
predefined tolerance the learning process starts again.

Parallelizing Infomax

The Infomax algorithm presents some difficulties for parallelization. Each iteration of the
convergence loop depends on the current estimate of the weight matrix at the beginning
of the loop. This value is not accurately known until the end of the previous iteration of
the convergence loop, we cannot readily unroll the convergence loop. Each iteration of
the training loop uses a subset of the source data, which, if the subsets are sufficiently
large, may form the basis of a distributed computation. Unfortunately, the recommended
size of the subsets is too small (e.g., EEGLab uses a default training set of 20
observations which is far too small).

 Rather than pursuing a distributed computing implementation, we are pursuing a shared
memory implementation with OpenMP. OpenMP provides a set of “pragmas” that
support automatic loop unrolling and other shared-memory parallelization techniques.
The loop unrolling “pragmas” were added to the NIC Infomax code as show in figure 2.

Validation of Infomax

At this point the NIC Infomax algorithm has been tested on a simple data set only. The
results match those of the EEGLab Infomax implementation on the same data set,
however, this is not a sufficient test.

Sequential Validation

{We compared the results NIC Infomax implementation to those of the EEGLAB
Infomax implementation, which we assume to be correct. To ensure consistency between
tests, we replaced the permutation of data indices with an ordered list of indices. The
whitening algorithm used in the EEGLAB implementation differs from the algorithm
used in the NIC implementation, so, for testing purposes, we skip the whitening step and
use the whitened data produced by the EEGLAB version.

 To validate the code, we used the data set from experiment #5, described in NIC-TR-
2004-002, to generate a weight matrix using both implementations.}

Parallel Validation

{ To validate the parallel versions of the Infomax algorithm, we followed the same
testing procedures and validation criteria as in the sequential validation process. We ran
the procedures for 1 – 32 processors on the NIC’s Dell Cluster (neuronic) and on 1 – 8
processors on the p655 shared memory cluster. (A description of the clusters will be
presented in a pending technical report). }

Performance of Parallel NIC Infomax

This is in progress as of the writing of this draft.

Bibliography

[1] Bell and Sejnowski

[2] Delorme, Makeig. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial
EEG Dynamics Including Independent Component Analysis. Journal of Neuroscience
Methods

