NIC-TR-2004-019

NIC Signal Cleaning Framework User Manual

Purpose

This document will describe the NIC Signal Cleaning Framework (NICSCF), how to
use and update it and how it is expected to fit into the larger NIC Brain Modeling Grid
Framework.

Framework Structure

The framework implements a general signal process consisting of data reader, an
optional preprocessing stage, a processing stage and an output stage see Figure 1. In the
preprocessing stage, we have implemented a data whitening process, however, as the
framework progresses we will add options such as data transformations, the identification
and removal of outliers and data filtering. The processing stage is responsible for
decomposing using factor analysis techniques (e.g., [ICA and PCA), spectral techniques
and other techniques as appropriate. The output stage presents the results and other data
related to the decomposition as screen or file output. The signal cleaning process is
controlled by a set of text-based forms, which the user edits for his or her specific needs.

signal

Read Data = Preprocessing 1 Processing = Output Results

Figure 1. Signal processing data flow.

Data Reading

The first step in the signal cleaning process is reading the data. We assume the data is
stored in a binary file in which each column is a single observation and each row is the
time series for a single channel. This format is called “channels x observations.” The user
is not obligated to store his or her data in this format as the NICSCF provides data
readers for “observations x channels” and he or she can store the data as a binary or
ASCII file. The user should be aware that he NICSCF will store a copy of the data file in
a binary, “channels x observation” format for future use by the user.

Preprocessing

Currently, NICSCF preprocessing procedures include data whitening only. Data
whitening is a statistical procedure, which requires finding covariance matrix and channel
average vector of the desired multi-channel data. The covariance matrix is decomposed
into its eigenvalues and eigenvectors, which are used to generate a sphering matrix and
the data are centered by subtracting the channel average vector from each column of the

data. After centering the source signals, the sphering matrix is multiplied by the centered
signals to produce whitened data. The data-whitening flow is shown in figure 2. For
details regarding the purpose and procedures of data whitening, please refer to NIC
Technical Report NIC-TR-2004-001. Please note that sphering matrix is not unique. It
depends on the decomposition algorithm so the sphering matrix produced by NICSCF
may not be identical to the sphering matrix produced by another set of code.

Muli—channel Signal Data
.

Compute covariance matrix

- F = “enter dats F “ Compute sphering mairix - " Whiten data
{includes signal averaging) Center data Comput hering matrix Whiten data

whitened
data

Figure 2 shows the data flow of the data whitening.

Processing

Currently, the processing procedures include sequential and parallel versions of the
FastICA algorithm and a sequential version of the Infomax algorithm. As we can convert
the whitening process a PCA process, so we will incorporate a PCA implementation
when time permits.

FastICA

The details of the FastICA algorithm are described in NIC-TR-2004-016 and the
procedure is schematically outlined in Figure 3. After whitening the data, the FastICA
algorithm attempts to find the rotation of multi-channel signal data such that rotated data
is maximally non-gaussian. The rotation matrix, which we refer to as the weight matrix,
is found by iteratively estimating each column of the weight matrix. The procedure
makes an initial guess about the column of the weight matrix, which in orthogonalizes
relative to all previously found weights. To refine the estimate of a column matrix, each
observation is passed through a contrast function that maximizes the non-gaussianity of
estimation and the new estimate is compared to the old estimate. If the two values are
sufficiently close, the procedure terminates and the output is produced. If, after a
specified number of iterations, the procedure does not produce an output, the process
terminates with an error message.

The NICSCEF allows the user to configure some aspects of the FastICA procedure.
Currently, the user can specify one of three contrast functions: cubic, Gaussian or
hyperbolic tangent (tanh). For an explanation of these choices please see [1]. The user
can also specify the maximum number of iterations, the convergence tolerance and he or
she can specify the method for making initial guess about the weight matrix. These
choices for these methods are the identity matrix (i.e., the guess for the i estimate is the
i™ column of the identity matrix) and random.

Find components

Random initial guess

Orthogonalize

Center data

Normalize
Whiten data Refine estimate

Contrast
Orthogonalize
Normalize

Error Estimate

Next Component

Output Weight Matrix

Figure 3 shows the FastICA data flow. The user can customize the process by selecting the contrast
function, the number of iteration, the convergence tolerance and the method for making initial
guesses.

Infomax

The details of the Infomax algorithm are described in NIC-TR-2004-017 and the
procedure is schematically outlined in Figure 4. As with the FastICA algorithm, the
Infomax algorithm whitens the data before it searches for the weight matrix. Unlike
FastICA, Infomax uses a learning algorithm to refine its guesses. The learning algorithm
randomizes the input data then partitions it into blocks of equal size. Each block is passed
through a learning algorithm that estimates changes to the weight matrix based on a
gradient search algorithm. After the entire data set is processed, the algorithm estimates
the convergence of the weight matrix relative to the previous estimate. If the two matrices
are sufficiently close, the algorithm terminates otherwise it adjusts the learning rate,
which can alter the speed of convergence.

The NICSCEF allows the user to configure some aspects of the Infomax procedure.
Currently, the user can specify the maximum number of iterations, the convergence
tolerance, the number of observations in a training block and the initial learning rate.

Source Data -
Find components

v
Covariance Matrix/
Average Vector

Permute data indicies
Tramning Loog
Load Training Set

Center data

Whiten data
T Update NN Weight Set

Update NN Bias

Error Estimate
v

Adjust Leamning Rate

Cutput Weight Matrix

Figure 4 shows the Infomax process. The user can customize the process by selecting the the number
of iteration, the convergence tolerance and the learning rate.

Output Results

The framework allows the user to output the primary results of the ICA process (i.e.,
the mixing and the unmixing matrices). These matrices can be printed as ASCII text or
binary files and they can be printed to screen. In addition to the primary results, the user
can select to print various intermediate results including the sphering matrix, the
eigenvalue and eigenvector matrixes and the whitened data.

Using the Framework

The framework relies on a set of text-based forms that the user is required to fill out.
All form files are held in a forms directory whose path, relative to the NICSCF home
directory is toolbox/models/signal_cleaner/forms. Both ICA procedures use the cleaning
form (cleaning.form) and the output form (output.form) and each procedure has its own
configuration form (fastica.form and infomax.form).

An example of the cleaning form is shown in listing 1. This form will cause the
NICSCEF to use the FastICA algorithm on a data set called “b_matl_6_4.ov.dat,” which is
located in directory ../data. The data is in an “observations x channels” layout and the file
is binary with 4 data channels and 7 observations. The user can change the processing
procedure by replacing FastICA with Infomax (note that the names are case-sensitive).
The data file can be changed by specifying the absolute data path to the desired data or
using a relative path to the data (the relative path begins in foolbox/bin). The user must
make certain that the data information is correct as the signal cleaner algorithm does
minimal error checking.

Algorithm : FastICA

Data Source File : "../data/b_matl_7_4_ov.dat"
Data Layout : observations x channels
Data Type : binary

Total Channels :4

Total Samples 27

Listing 1 is cleaning.form located in toolbox/models/signal_cleaning/forms/. The
user can edit the file to setup data reading and to select the processing
procedure.

The output form is shown in listing 2. The form allows the user to specify how the
NICSCF will output data. For screen output, the user can type ‘n’ or ‘y’ to indicate
whether a particular data object is to be displayed and he or she and type ‘a,” ‘bi’ or ‘bo
to store a data object in an ASCII or binary file or both. If no file storage is wanted, the
user types ‘n.” If the user wants a file output, he or she must specify a file name and the
NICSCF will append an extension to the file name indicting the contents of the file.

9

Screen OUtPUL —------=mmmm oo
Weight matrix screen 'y
Mixing matrix screen n
Unmixing matrix screen n
Q matrix screen 'n
Lambda A(-1/2) matrix screen n
Average vector screen n
Covariance matrix screen n
Sphering matrix screen n

File Output----m- oo oo oo o
File name : output

Sphering matrix file 'n .sph
Weight matrix file ja wgt
Unmixing matrix file : bi .umx
Average vector file : bo .avg
Covariance matrix file 'n .cov

Listing 2 is the output form. This form will print the weight matrix to the
screen, and print the weight matrix to an ASCII file called Aoutput.wgt, the
unmixing matrix to a binary file called Boutput.umx and the average vector
to an ASCII file called Aoutput.avg and a binary file called Boutput.avg.

The FastICA form is shown in listing 3. The form allows the user to select the error
tolerance, the number of iterations, the contrast function and the method for initializing
the weight guesses.

FastICA form
Error tolerance - 0.00001
Number of iterations : 1000

contrast function choices are:

cubic
gaussian
tanh
Contrast function : cubic
Initial W : identity(random, identity)

Listing 3 shows the FastICA configuration form. In this case, the user has selected an error
tolerance of 0.00001, 1000 iterations, a cubic contrast function and the identity matrix as the
initial ouess for the weisht matrix.

The Infomax form allows the user to select the error tolerance and the number of
iterations for the convergence loop and it allows the user to select the size of a training
block and the learing rate for the learning algorithm.

Infomax form

Error tolerance : 1.0e-6
Number of iterations : 1000

Learning algorithm configuration
Learning rate 1 9.3775e-04
Block size 134

Listing 4 shows the Infomax configuration form. In this case, the user as selected an error
rate of 10-6, a maximum of 1000 iterations, a learning rate of 9.3775 x 10** and a block size of
34.

After configuring the file and ensuring the data file is in the location described in the
form, the user can execute signal_cleaner from the toolbox/bin/ directory.

Modifying the Framework

The framework is used to manage a data flow process for signal cleaning. The process,
shown in Figure 1, is decomposed into four steps, each of which can be configured by the
user via forms. The forms allow the user to modify the existing code, however, the point
of the framework is to support the addition of other code. Developers can modify the data
flow process by producing alternate procedures or modifying existing ones. To make
changes to the framework, the developer must be familiar with structure of the
framework.

Framework Design

To understand the modification procedures, it is necessary to first understand the design
of the framework. The NICSCF consists of three main components: the model
component, the form readers and mathematical/statistical tools. The model package
includes specific statistical models (e.g., ICA and PCA) and data structures that contain
model specific data such as the covariance and sphering matrices. The form reader
package consists of a generic reader class and model specific subclasses. The reader
classes act as intermediaries between the forms and the model classes. The
mathematical/statistical package contains general computational classes and functions,
e.g., eigenvector/eigenvalue decompositions and covariance matrix computation. The
framework structure is shown in figure 5.

Data Reader Component

Parser I Forms

Model Component "
Mosdel
Source Data Instruction Reader Output Instruction Reader
configure

procedure
FastlCA Instruction Reader Infomax Instruction Reader F

FastlCA Infomax
Muth/Stats Component

ovarinace matrix

ng matrix - LAPACK

nic_matrix

. cigenvalue decompositio
nie_vectar cigenvalue decomposition

Figure 5 shows the structure of the NICSCF.

Model Component

THE REMAINDER OF THIS SECTION IS UNDER CONSTRUCTION

